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1. It is known that the equations of motion of a heavy solid about a 
fixed point inside, with au arbitrary ellipsoid of inertia about its 
fixed point, aud with its center of gravity 
inertia xy, are 

in the principal plane of 

_4 ;; + (C - R) 4’ = .Wgy,yU, 

B 2 -/- (A - C) pr = - Mgx,f’, 

C $+(B-Ah=-Ww’- you). 

In order to satisfy the conditions for a peudul ar mot ion 

(1.2) 

the quantities r, y, y ’ must satisfy the equations 

TY = _ r7 
dt (1.3) 

which follow from the system (1.1). 

‘lhe substitution r = 4, y = sin g&y’= cos 4, reduces the equations 
(1.3) to a single second-order equation 

‘lbe solution of this equation can be elq>ressed through Jacobi elliptic 
functions [ 1 1 with the period o = 4 K/R; then the quantities r, y, y’ 
are expressed by 

422 
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rl = 2Rk cn (Rt) (k -= sin ‘Is +& 

71s cos ‘p. -I- 2k sin cpo sn (Rt) dn (Rt) - 2k2 CQS 9. SIP (Rt) 

7%’ = sin ep, - 2k em q+ sn (Rt) dn (Rt) - 2kz sin yO sn2 (Rt) 

U.5) 

Here k is the modulus of the corresponding elliptic integral, $ is 
the greatest displacement angle of the centerof gravity of the P so id 

from the positian of stable equilibrium, and the quantity K entering in 
the expression for the period of these functions is the full 
integral of the first kind which corresponds to the given R. 

We shall consider stability in the first ~p~ximation of 
as defined by CL 2) and (1.53, assm+ that the parameter k 
ciently small, and begin the analysis with the case x,, < ya. 

elliptic 

the motion 
is suffi- 

2. Denoting the variations of the variables in the perturbed motion 

by 6, V, 5, P, v, IQ, we obtain 

p = E, Q = qt I’= r1+ u, 7=71-k% 7l = 71’ + w, 
7” = 5 f24 

and the equations in Foincare’s variations are 

d5 - - afly + y& drl 
dt &- = - b,rlF - 20x, f = 7lT - 73 (2.2) 

du 
d?_ = xonw - yo”u, 

dV 

- I”lW + 7A 
dW 

z- X== -r1v - 7$.z (2.3) 

where 
B--C=a 

A 
A--C b O, -zzz 

B 0 

iMg=J J&w - Mgxo ww? 
(2.4) 

~ = q)‘, 
B A YoJy ___ = x,“, 

c 
-= 

c Yo” 

In this way the sixth-order system of equations for the perturbed 
motion in the first approximation is broken down into two independent 
lin&ar systems of the third order with periodic coefficients; further, 
the product of the roots of the characteristic equation of each inde- 
pendent system equals unity. 

Utilizing the first three integrals of the system (1.1) 

7 2 + 7’2 + 7112 = 1, Apy + Bgy’ $ Cry” = G, 

Ap2 -f- Bq” + Cr2 - 2iWg (xoy -i- y,~‘) = C, 

(2.5) 

and the formulas f2.1), we obtain the following first integrals of the 
system (2.2) and (2.3): 
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where H and G are arbitrary constants. The system (2.2) has one first 
integral (2.7), and the system (2.3) has two first integrals (2.6) and 

(2.7). 

We shall examine the system (2.3). Taking into account that (2.3) was 

derived from the autonomous system (1.1) there exists, on the strength 

of PoincaNs theorem, not only the first two integrals but also the 

periodic solution 

. 
a1 = r 1, 1’1 = -i I, WI z- f 1’ (2.9) 

We shall show that the second solution uZ, v2, wg. of the system (2.3) 

is not periodic. Indeed, using the integral (2.6) to reduce the system 

(2.3) to a single second-order equation, with respect to u for example, 

we shall find by the Liouville formula the particular solution 

(I, (t) = 
1 - 2k? Sll? (Rt) -- 

4k2RS sn? (Rt) tln2 (tft) > 
(2.10) 

The function L,(t) is periodic with the period or = l/2 o and is dis- 

continuous at the points where t is a multiple of the period o.The func- 

tion uz, however, is a continuous function in any finite interval of 

time, and as the mean value of L(t) is non-zero, the function uz increases 

with time without bounds. The same can be said about the functions v2 and 

w2; hence to the triple unit root of the characteristic equation there 
corresponds not more than two groups of solutions. 

Thus, for the trivial solution of (2.3) the conditions of stability 

with respect to the variables u, v, w, are not satisfied if the initial 

perturbations are not restricted in any way, and the motion of a solid 

determined by (1.2) and (1.5) will be unstable in the first approximation. 

In the general solution of (2.3) 

7.1 = ClU, + C?U?, 2; = C,?., + C&, _ w = CIW, +- c,w, 

(the existence of the integral (2.6) mak es the third arbitrary constant 

equal identically zero) the initial perturbations will be subjected to 
the condition C, = 0. 

Taking the initial instant of the time t = 0, we obtain from the 

formulas (2.9) and (2.10) the conditions for the initial perturbations 
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in the form u(O) = 0. 

It should be mentioned that the above condition could be also obtained 

from the integral (2.8) by setting G = 0. 

From the above considerations it follows that the characteristic equa- 

tion of the system (2.3) has a triple unit root and if the initial per- 

turbations are subject to the condition u(O) = 0, then the solution of 

the system (2.3) is periodic 

u = CIF1, 2’ = c,+,, 2u = C&’ (2.11) 

(here C, is an arbitrary constant) and the conditions of stability for 

this system will be satisfied. 

3. Let us consider now the system (2.2). Utilizing the first integral 

(2.7) we can transform this system to a system of two equations of the 
first order 

dE 
d7 
- = i ni +- jlL + F,H, "'; = j.J -+ j2& -f- F,H d: (3.1) 

Here 

j21= --;[b-&-(a-b)y,‘], jg2=-1bF 

F 

1 
= la (1 -b) 1’1 

- ?’ C 
F, z_tI,rL 

c r1’ 
(3.2) 

Equations (3.1) reduced to a single equation of the second order are 
as follows: 

Here 

;; $ F(T) Q = S(T) H (3.3) 

The coefficient and the free member of Equation (3.3) are continuous 
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periodic functions of the time with the period I, 
series, and also for sufficiently small values of 
tioms of k, 

We shall find the expansion of the coefficient 

expansible in Fourier 
k are analytic func- 

F(r) in powems of the .S 
parmeter k, tr~cat~g all terms of degree higher than k*, 

Jiknot;lg 

WB obtain 

t 11 - - - 4 (1 - b) [Ite, + k*e, + Fez], 

hence the coefficient in the equation (3.3) will be 

In the above formulas the ~tity (I is replaced by the ~r~~d~ 
expression from Formula (3.51. 
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Al.1 the ~~~i~~es Klk; X2; k) fi = 1, 2, . ..I are ~1~~~~~1s in b, 

s, At and with respect to the parameters k and X2 the coefficient 
F(r; X2; kI could be expressed in the form 

F(T; ha; k)=h2[2-l-kj:f1(z; k)l+Icf,(t; k) (3.6) 

where the fictions fl and fz do not depend on X2. 

From the Fourier series expansion of the Theta fiction 111 we obtain 
the following relation 

S~(l~~~ = sin22 -2 kz (sin 2r-sin62) 

~~(2~~~ = cos2z -5 ke (3c0s22-40~67) 

Using the above relations we could write 

xol= pr (h2) sin 22, %'L = p&2) -j- ~3(~~~cos~~ 
(XT) 

xos = P4(h2) + P5P2) sin 22 -+- pe(ka)sink + p7(ha) sin 6r 
Here 

pl(h2) =- 2s(ha--- 1% + 6) 

?2(~2~ = - {~2[~~2~(~-~)J-8~~ -8~(~-~~!~+2~-2+8~(~-~)} 

p&2) = -(??[2(1 -b)p- I]-8~(l-b)- 
(3*8) 

-@?p(1--4)+2p-- 2+8w--6)) 

pa(h2)==~ +l.2-4b 
I I 

p6(h2)=s 2~~~~(~-b)~22b- 
1 

141- p.z -p+]} 

The coefficient Ffr; h2; k) assumed the final form 

F (7; ha; k) = h2 + kxsx (T; X2) + k%jz (T; X2) + k3x,, (T; X2) + . . . (3.9) 

Where Kol, KCo2, Ke3 L . . do not depend on the paremeter k. We shall cow 
sider the ~~~~s equation, corresponding to E&u&ion (3.3): 

g--i-F@; P; k)a =o (3.40) 

which determines the stability of the trivial solution of the nonh~nm- 

gmeous equation. 

With regard to this equation it is known f2 1 that in the neighbor- 
hood of every integer there exist two values of A*, which are analytic 
with respect to kx (~5: l/2 or 11, for which the corresponding solution 
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of Equation (3.10) will be periodic with the period R or 2~ . 

In this case the coefficient F(r ; X2; k) is an analytic function of 

k*, hence the initial conditions must also be analytic functions of k*, 

and the considered periodic solution 

c? = q,* (r) + kXo; (T) + . . . 

will be au analytic function of k* too. 

From the equation which determines aa*(r ) 

where n is a nonzero integer, and all A* are real and analytic functions 

of k(x = l), it follows that oO*(r ) cannot be a constant. 

Indeed, utilizing the method pointed out in Malkin’s book [ 2 1 we 
could obtain on the strength of Formula (3.6) that A* satisfies the 

relation 

(2 is a periodic solution, conjugate to CT*), whose right 

positive when k is sufficiently small. 

1 
-1 

d7 (B = 12) 

member is always 

We shall show now that when the moments of inertia are related as 

follows 

A >C, B>C (3.11) 

then for Equation (3.10) there exist regions of instability which do not 
degenerate into a point when k takes on nonzero values. 

To determine the boundaries of these regions of instability we shall 

utilize the well-known method [ 21 which, as shown above, could be fully 

applied in our case. 

Since the inequalities (3.11) are equivalent to the inequalities 

a < 1 and !_I Q 1, it follows from Formula (3.5) that h 4 2 and there exist 
only two regions of instability corresponding to n = 1 and n = 2. 

In order to find the first region of instability we substitute in 
Equation (3.10) 

h2= 1fa,k+a,k2+a3k3+. . . 

and try to meet this condition by a series solution 
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cr==n,cos~-i-B,sint+Ico,+k2a,-i_Ii353$. . . 

with periodic coefficients, where A, and B, are arbitrary constants. ‘Ihen, 
the equation which determines C, is 

(3.12) 

'$$- -tgl= - [%A, +fpi(1)&] C0S-e - [cxlBO + +pl(l) AOJ sinr + 1 . . ' 

from which it follows that the necessary condition for periodicity must 

have the form 

tci(1.2) = It: f PI(l) 

When ~~(1) # 0 there exist two distinct solutions for a1 which gene- 
rate series determining the boundaries of the regions of instability 

1 --';.IP1(W+ * * . <~~2~~+$.lpP1(1)1k+. . 1 (3.13) 

Since ~~(1) = 24s (b - 7/12), in order to determine the boundaries of 
the regions of instability when b = 7112 (the case when s = 0 will be 
examined separately), it is necessary to consider an approximation which 
follows. In this case the solution of (3.12) will be 

zl= A,cosr +B,sins 

where A, and B, are arbitrary constants and a2 is determined from the 
equation 

d"oz 
&z-+2== - nofa2 +~z(~)ICOS~--~~[~~+ p~(~)]~i~~ + . . . (3.14) 

The necessary condition for the periodicity of the second approxima- 
tion will take the form [a2 + ~~(1) I2 = 0 and the general solution of 
bation (3.14) will be 

where A, and B, are arbitrary constants and 02* is a particular sofution 
of this equation. From the equation for the third approximation 

‘2 + a3 = - {A0 [a, + P4 (I>1 -t f [P6 (1) - pz (1) -&J Bo} COST - 

- {Bo [% -k ~4 (t>l + ~[FJS (1) - p2 (1) &] A,} sinr I- . . . 

follows that the necessary condition for the periodicity of u'3 gives 
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As the quantity 

I Pa (1) -Pa (1) $&,,z, = s <PF + %? 

does not vanish (t > l), there exist always two distinct solutions for 

s3k fl) < azf*)] and the region of instability which we want to find is 
determined by the following inequalities: 

I- pa (1) ka + as(‘) k3 + . . . <A” \< I- pz (1) k2 + cq+(@ k3 + . . . (3.15) 

In order to determine the region of instability corresponding to the 
n~ig~~rh~d of h. = 2 we substitute X? = 4 + alk + azk2 + . . * in IQua- 
tion (3.10) and assume the series solution 

a===A,,cos2~+B,sin2~+ko,+k2a2+. . . 

with periodic (period R) coefficients (A, and B, are arbitrary constants). 
Then, from the equation for the first approximation 

$$- + 40~ = - A8 a1 cos 22 - BoaI sir& - pT (A, sin 4~ -j- B, - Be cos 4.~) 

follows, that the condition for periodicity of or gives aI2 = 0 and the 
general solution of this equation is 

or = A, cos 2~ + B1 sin 2~ + kpl (4) (A, sin 4r - B, cos 4r - 3B,,) 

where A, and A, are arbitrary constants. For the approximation 

~+4cz=-&+z+&(4)+$ pr2 (4) -+fp~(4)]eosZ~- 

--&I 
[I 
%+p2(4)--&p~2(4)-+p3(4)]sin2r+. . . 

the necessary condition for periodicity has the form 

62 5 p2 (4) + 2 ~2 (4) -I- $ p3 (4)) x (3S6) 

d&2+-92(4+ ,,~1~(4)+~~9(/f)-[1~~(4)$~~~~(4)13=0 

Since under the condition s < 1 the expression 

8ps (4) + pie (4) = 32 [4s2 (4b* - 7b + 3) + 11 

does not vanish, it follows that Equation (3.16) determines two distinct 
values for a,[ az(‘) < a2 (*)f and the region of instability which we 
want to find is determined by the following inequalities: 
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4 + c@) k2 + . . .\<ha<4+az@)k2-i-. . . (3.17) 

‘l’he boundaries of the region of instability in the case s = 0 (R = 1) 
could be found from the inequality (3.17). Indeed, in this case we have 
from Formula (1.4) that +,, = l/2 I, and that the coefficient F(r; X2; k) 
is a continuous, periodic function with the period l/2 s and for suffi- 
ciently small values of k an analytic function of k*. Therefore, re- 
placing the independent variable I in Equation (3~10) by a new variable 
rl = 2r,the period of the function Ffr; X2; K) will be again R and we 
shall have 

-$$ + f F (r,;h2; k2) a = 0 (3.18) 

Since the quantity l/4&' can assume an integral value only in the 
case when n = 2, it follows that after replacing in Formula 13.16) pi{41 

by l/4 p,(4) we obtain two distinct values for o1 

ccl(l) = 2 - 4b, a,(z) = 3 - 4b 

and the region of instability is determined by the inequalities 

f+(Z--4b)k’+ . . .<$V<1+(3--b)P+. . . (3.19) 

Since the transformation coefficient (3.4) is a periodic continuous 
function, nonvanishing in the entire period, we can say that the char- 
acteristic equation of the system (2.2) has only one unit root; if X is 
outside the region of instability, that we have a conjugate pair of com- 
plex roots of unit modulus; if h is inside the region of instability we 
have tar0 roots, one nMlerically greater, another numerically smaller 
than unity. If A is on the bouudary of the region of instability, then 
the characteristic equation of the system (2.2) has a triple unit root. 

In the first case, the solutions of Equation (2.2) will be stable, in 
the second case unstable. lhe stability in the third case is of no in- 

terest to us. 

&en x0 > y,, we could use all the previously-derived formulas after 
performing in them the following substitution: 

ro++Yo, AoB, to-t, h--q, vow (3.20) 

We shall mention, that in this way we could conduct an analysis when 
moments of inertia A, B, C have completely arbitrary values, that is, at 
any n = 3, 4, 5, . . . 

4. Thus, when the parameters A, B, C, x,,, yea r,ho characterizing the 
distribution of mass ioa solid and in the unperturbed motion, respect- 
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ively, satisfy the condition (3.11) and any one of the conditions f3.131, 
(3.151, (3.171, (3.19) with the inequality sign, then the characteristic 
equation of the system (2.2) and (2.3) will have one root numerically 
greater and one root numerically smaller than unity and the remaining 
four roots equal to unity. If the above-mentioned parameters satisfy any 
of the relations (3.131, (3.151, (3.171, (3.19) with the equality sign, 
then the characteristic equation will have six unit roots; when the para- 
meters A, B, C, x0, yo, $J@ do not satisfy any of the above mentioned re- 
lations, then the characteristic equation will have a conjugate pair of 
complex roots of unit modulus, and four unit roots. 

If all restrictions on initial perturbations are removed, then in the 
first approximation, the instability will take place with respect to the 
variables r, y, y', and in the case when the parameters A, B, C, n,,, yo, 

1Gb, besides the condition of smallness for &, and the condition (3.11) 
satisfy also any of the relations (3,131, (3,151, (3.17), (3.19) with the 
inequality sign, then the instability will take place with respect to the 
variables p, q, y”. In this case, according to the well-known results of 
Liapunov [3 1, the unperturbed motion will also be unstable. However, im- 
posing on the initial perturbations certain restrictions we shall have a 
conditional stability with respect to all variables p, q, r, y, y’, y” 

in the first approximation, and a conditional stability of the unperturb- 
ed motion E3 1. 

In the case when the parameters A, B, C, x,,, ye, $ro do not satisfy 
any of the above mentioned relations, then in the first approximation 

and under the restriction u(O) = 0 we shall have the conditional stabil- 
ity with respect to all the variables p, q. r, y: y’, y” . 

In the case when the parameters A, B, C, no, yo, +,, satisfy any one 
of the mentioned relations with the equality sign, then we shall have 
the conditional stability with respect to all the variables p, q, r, 

Yt r: y* in the first approximation with certain additional restric- 
tions on the initial conditions besides the one u(O) = 0. These restric- 
tions would depend on the number of groups of solutions corresponding to 
the triple unit root of the characteristic equation of the system (2.2). 

'Ihe stability of the unperturbed motion in the last two cases turns 
out to be critical and requires an additional investigation. 

'Ihe performed investigation allows us to estimate the stability of 
the motion of a solid determined by Formulas (f.21, (1.5) for sufficient- 
ly small values of k. 

It is my duty to express my gratitude to L.N. Sretenskii for his 
suggestions which were taken into account in this paper. 
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