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1. It is known that the equations of motion of a heavy solid about a

fixed point inside, with an arbitrary ellipsoid of inertia about its

fixed point, and with its center of gravity in the principal plane of
inertia zy, are

d ” d ! "

4L +(C—B)gr = Mgy, a ="
d ” ] ! "

B+ (4—C)pr=— Mgz, %:m —ry (1.1)
d ’ dy” 4

€ 5 + (B—4) pg = Mg (xy — yoY)- &=

In order to satisfy the conditions for a pendular motion

p=qg=x"=0 (1.2)
the quantities r, ¥, y” must satisfy the equations
M , d ., dx’
= =y, G = g = (1-3)

which follow from the system (1.1).

The substitution r = q§, y = sin ¢, y”= cos ¢, reduces the equations
(1.3) to a single second-order equation
d? a , Mgy o [ > : ;
;lth)—‘R'COS(iPTCPo)-“—‘O (\Hz:%VngZIg, tg‘Po=z‘:/ (1.4)
The solution of this equation can be expressed through Jacobi elliptic
functions [ 1] with the period = 4 K/R; then the quantities r, y, y’
are expressed by
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ry = 2Rk cn (Rt) (k = sin /o ¢y) (1.9)
1 = €0S o -+ 2k sin g, sn (Rt) dn (Rt) — 2k* cos go sn® (Rt)
1 = sin ¢, — 2k cos g, sn (Rt) dn (Rt) — 2k® sin ¢, sn® (RE)

Here k is the modulus of the corresponding elliptic integral, ¢, is
the greatest displacement angle of the center of gravity of the solid
from the position of stable equilibrium, and the quantity K entering in
the expression for the period of these functions is the full elliptic
integral of the first kind which corresponds to the given k.

We shall consider stability in the first approximation of the motion
as defined by (1.2) and (1.5), assuming that the parameter k is suffi-
ciently small, and begin the analysis with the case x, < y,.

2. Denoting the variations of the variables in the perturbed motion
bY E» 7, g: u, v, w, we obtain

7

. ‘ ) , (2.1}
p=%E g=w r=r-4u y=nutv, Y=1u+w (' =U

and the equations in Poincare’s variations are

dE ' d'ﬂ ’ dt ’
21 = %'+ Yo ¢, 7 boriE — 7', 7 ¢ L Rl #1 £ (2.2)
du o dv R dw
E:xowmyo”v, 7=+ 'y, ar =TT (2.3)
where
B—C A—C

AT E 2.4

ngo —_ ’ ngo . ? ngo =g ” ngo — ” '
B — L0 4 a4 yO ’ c Yo c~ = yo

In this way the sixth-order system of equations for the perturbed
motion in the first approximation is broken down into two independent
linear systems of the third order with periodic coefficients; further,
the product of the roots of the characteristic equation of each inde-
pendent system equals unity.

Utilizing the first three integrals of the system (1.1)

T+ +y"=1,  Apy+Bgy +-Cry"=C, (2.5)
Ap* - Bg® 4 Cr2 — 2Mg (%oy -+ Yo1') = Cq

and the formulas (2.1), we obtain the following first integrals of the
system {(2.2) and (2.3):
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T 1w =0 (2.6)
Ay -l By - CCryp = H (2.7
i — 2" — 4" w = G (2.5)

where H and G are arbitrary constants. The system (2.2) has one first
integral (2.7), and the system (2.3) has two first integrals (2.6) and
(2.7).

We shall examine the system (2.3). Taking into account that (2.3) was
derived from the autonomous system (1.1) there exists, on the strength
of Poincaré’s theorem, not only the first two integrals but also the
periodic solution

. A . ey
Uy =1r,, 1 =91, Wi =91 (29)

We shall show that the second solution u,, vy, wy. of the system (2.3)
is not periodic. Indeed, using the integral (2.6) to reduce the system
(2.3) to a single second-order equation, with respect to u for example,
we shall find by the Liouville formula the particular solution

. o 1 — 2k2sn? (RY) .
He =T S Lx)at (L (t) = 4k2R* sp® (Kty dn? (1ft)> (2.10)

The function L(t) is periodic with the period w; = 1/2 o and is dis-
continuous at the points where t is a multiple of the period @. The func-
tion u,, however, is a continuous function in any finite interval of
time, and as the mean value of L(¢t) is non-zero, the function u, increases
with time without bounds. The same can be said about the functions v, and
w,; hence to the triple unit root of the characteristic equation there
corresponds not more than two groups of solutions.

Thus, for the trivial solution of (2.3) the conditions of stability
with respect to the variables u, v, w, are not satisfied if the initial
pertufbations are not restricted in any way, and the motion of a solid
determined by (1.2) and (1.5) will be unstable in the first approximation.

In the general solution of (2.3)

u = Cyuy + Cous, v = Cyvy + Cary, w = Cywy - Cow,

(the existence of the integral (2.6) makes the third arbitrary constant
equal identically zero) the initial perturbations will be subjected to
the condition C, = 0.

Taking the initial instant of the time t = 0, we obtain from the
formulas (2.9) and (2.10) the conditions for the initial perturbations
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in the form u(0) =

It should be mentioned that the above condition could be also obtained
from the integral (2.8) by setting G = 0.

From the above considerations it follows that the characteristic equa-
tion of the system (2,3) has a triple unit root and if the initial per-
turbations are subject to the condition u(0) = 0, then the solution of
the system (2.3) is periodic

u=Cyry, v = Cy, w=Cy (2.11)

(here C, is an arbitrary constant) and the conditions of stability for
this system will be satisfied.

3. Let us consider now the system (2.2). Utilizing the first integral
(2.7) we can transform this system to a system of two equations of the
first order

d e - dg ,
£=fuc—:—f12’s + F,H, d—::/ﬂgffzzc + F.H (3.1)

Here

9

Ju=—1=02 ==t =5 — ]

fa= =gt re—vn] e
_la(1—b) = Lpm '
N RS (3.2)
0] ¢ ¢
l=o, t=bk, e=x, b=y

Equations (3.1) reduced to a single equation of the second order are
as follows:

;1;2 T F(T)GZJV (‘t) H (33)
Here
§=Viun'e (3.4)
- 1 1.dQ 1(dF
Foy=P—7Q@—5x, N@= fl At f22fn+F2)
1 df
Q= _(fm d-:2+f11+ f”)’ ( lzdfifil +f21f1z—“f11f22>

The coefficient and the free member of Equation (3.3) are continuous
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periodic functions of the time with the period #, expansible in Fourier
series, and also for sufficiently small values of %k are analytic func-
tions of k.

We shall find the expansion of the coefficient F(r) in powers of the
parameter k, truncating all terms of degree higher than k3.

Denoting

v=TE, p=tte, s=B, eoglsbie g5

Yo

we obtain

2 ;2
l= (1+ z)
vValr + ot
fin = —4(1 — b) [key + k%, + Ke,], friz= T*z'ﬂ‘g‘““ [1 -+ K25 4 K¢,)
Vﬁ‘oe’i“yo“

im
fa=— 2Vl [‘)'2 + keg--k?eg -+ ksf?:] s [fag = —4blkey -+ K% -+ Ke,)

¥ayo

hence the coefficient in the equation (3.3) will be

Fr; 2 k) =234 kg (15 A% k) -+ A (t N k) K (t; A% K) ...
Here
0y = 2(3—2b) 50 1 4o,

g = 2 (3 — 26) G2 -+ heo + Wey + deg? 145 (1 — b) — 1] — 5 52
xg = 2 (83— 2b) 3+ dey -+ Ney -+ Bereg [4b (1 — b) — 1] —
— 2P 2(1—2b) e 1 deye,

6o =scn(lRt), e =2usn(lRt)cn(lRx), e, =scn(lRr) {-ﬁ- + 4y sn? (ZR:)}
6=+ —4(1—b)pen®(lRr), e = —8(1—b)spsn(lRr)on?(IRx)
e5 = 2ssn (IRx) (2b —4¥),  e=32+ 25 (IRr) (2bp. --__}w)
e;=ssn(IRe) [+ (80— A2) 4 8by sn? (LRx) — sn ({Rx) (zb — -})@)}

In the above formulas the quantity a is replaced by the corresponding
expression from Formula (3.5).
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All the quantities x,(r; A% k) (i = 1, 2, ...) are polynomials in b,
s, A? and with respect to the parameters k and A? the coefficient
F(r; A%; k) could be expressed in the form

F(t; W5 k) = N[+ kfy (v )]+ kfa(s; k) (3.6)
where the functions f, and f, do not depend on A2,

From the Fourier series expansion of the Theta function [1] we obtain
the following relation

su (LRr) = sin 2t — = k? (sin 2t — sin 6r)

cn (IRt) = cos 2t — k2 (3 cos 2t — cos br)
Using the above relations we could write

o1 =py (A2)sin2t,  wog = ps (M%) + ps (N?) cos bt
3.7)
%o = pg (M) + p5 (A?) sin 2t + pg (M2) sin 4t - pq (A?) sin 67
Here
p1 (M) =— 25 (A2 — 12b + 6)

02 (M) = — N2 [ 5 4 2. (1 — b)] —8ub — 8b (1 — B + 2 — 2 + 8b (1 — b))
P (W) = — 21 —b)p— 1] —Bu (1 —b) — (3:8)
~Sng(£~b)+2gxw2+8b(iwb)}
pa (%) = 5 [ 32— 4b]
ps %) =5 {20 M2 (1 — b) + 225 — 14] — [2 02 — T b+ 2]}

The coefficient F(r; A%; k) assumed the final form
Foy W k) = N kg (15 M) + BP0 (75 R%) + K3 (s M) ... (3.9)

where Ky, Kgg, Kg3 +« do not depend on the parameter k. We shall con-
sider the homogeneous equation, corresponding to Equation (3.3):

22

3—%+F(r; A% K)o =0 (3.10)
which determines the stability of the trivial solution of the nonhomo-
geneous equation.

With regard to this equation it is known [2 ] that in the neighbor-
hood of every integer there exist two values of A*, which are analytic
with respect to k* (x = 1/2 or 1), for which the corresponding solution
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of Equation (3.10) will be periodic with the period # or 27 .

In this case the coefficient F(r; A%; k) is an analytic function of
k*, hence the initial conditions must also be analytic functions of k¥,
and the considered periodic solution

6" = agy" (1) + KXo, (t) + . ..

will be an analytic function of k* too.

From the equation which determines o,*(r)

d?cg*

o0 ntag =0

where n 1s a nonzero integer, and all A* are real and analytic functions
of k(xy = 1), it follows that 0,*(r) cannot be a constant.

Indeed, utilizing the method pointed out in Malkin's book [2] we
could obtain on the strength of Formula (3.6) that A* satisfies the
relation

Br Br

o _ ( [do*do* Ly Dr o NS ot gl B =1,
)\2_§[ kfs(t: k) 3* o ]dt[g[i—l—kfl(-:, K)o o d‘c] B =12

dt dx
0

(0* is a periodic solution, conjugate to 0*), whose right member is always
positive when k is sufficiently small.

We shall show now that when the moments of inertia are related as
follows

A>C, B>C (3.11)

then for Equation (3.10) there exist regions of instability which do not
degenerate into a point when k takes on nonzero values.

To determine the boundaries of these regions of instability we shall
utilize the well-known method [ 2] which, as shown above, could be fully
applied in our case.

Since the inequalities (3.11) are equivalent to the inequalities
a<land b< 1, it follows from Formula (3.5) that A < 2 and there exist
only two regions of instability corresponding ton =1 and n= 2.

In order to find the first region of instability we substitute in

Equation (3.10)
)\2': 1"}"“1k+“2kz+a3k3+ PRI

and try to meet this condition by a series solution



The stability of motion of a heavy solid about a fixed point 429

¢ == Agcost - Bysint - ko, -+ ke, + Koy - . . .

with periodic coefficients, where Ao and B, are arbitrary constants. Then,
the equation which determines C; is (3.12)

d201

dT2 ‘1— gy = [G‘I*AO + '}2“()1(1) Bo] Cost — [OLIBO + —;‘91(1) Ao] sint + [

from which it follows that the necessary condition for periodicity must
have the form

o, = & 5 p, (1)

When p (1) # O there exist two distinct solutions for a, which gene-
rate series determining the boundaries of the regions of instability

1—Llo (k4. . <RI+ p Wk .. (3.13)

Since p,(1) = 245 (b - 7/12), in order to determine the boundaries of
the regions of instability when b = 7/12 (the case when s = 0 will be
examined separately), it is necessary to consider an approximation which
follows. In this case the solution of (3.12) will be

= A;cost 4 Bsint

where A, and B, are arbitrary constants and o, is determined from the
equation

dzﬁg

Ja T o2= — Agloy +py(1)jcost— By[as 4 p, (1)]sing + ... (3.14)

The necessary condition for the per10d1c1ty of the second approxima-
tion will take the form [a, + p,(1) 1% = 0 and the general solution of
Equation (3.14) will be

oy == 45087 4 Bysint c;

where A, and B, are arbitrary constants and 0,* is a particular solution
of this equation. From the equation for the third approximation

dd:: + 3:“{A [og - pg (1)) +‘}'[Ps(1)——pz(1)—5§(—§\%)—]30}cosr~—-

— {Botas o (014 5 [os (1) — 2 (1) 5708 Ao} sin< - .

follows that the necessary condition for the periodicity of o3 gives

a2 = {-— pg (1) -+ %‘ [Pﬁ (1) —p= (1) bi_;)\lé}:i}b?:?/w
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As the quantity
7]
[?5 (1) — P2 (1) F) (‘;\12) }b:—,fxz =S ({“ 2:;() + 1?:;8

does not vanish (g > 1), there exist always two distinct solutions for
as[aafn < a,¢??] and the region of instability which we want to find is
determined by the following inequalities:

1 —pp () agW kS 1. . <N —py (1) A2+ 2@ K 4. .. (3.15)

In order to determine the region of instability corresponding to the
neighbourhood of A = 2 we substitute A? - 4y ak + azkz + ... in Equa-
tion (3.10) and assume the series solution

o == A,c0s2t + Bysin2t + koy -} k®op 4 . ..

with periodic (period #) coefficients (4, and B, are arbitrary constants).
Then, from the equation for the first approximation

% + 4oy = — Ay 0 c08 2t — By, sin2t — "—‘;—4}- (4,sin 4t + B, — B, cos 41)

follows, that the condition for periodicity of o, gives a 12 = 0 and the
general solution of this equation is

6y = A, cos 2t + By sin 2t + 5-p; (4) (4; sin 4t — B, cos 4t — 3B,)

where A; and A, are arbitrary constants. For the approximation

dz T
d—::*+452"-= *—Ao[012+92(4)+;1; o2 (4) +—;~p3(4)] cos 2t —

——-Bo[a2+p2(4) -—;8—912(4)—_;—93(4)] sin2t + . ..

the necessary condition for periodicity has the form
{as +pa(4) + 5 0% (4) + 5 ps (4)} X (3.16)
X {os + s (4) + 4 02 () + Fos(8) — [pa(B) + L o2 (@]} =0
Since under the condition s < 1 the expression
8ps (&) + p1? (4) = 32 [45° (46 — Tb + 3) + 1]

does not vanish, it follows that Equation (3.16) determines two distinct
values for a, [ “2(“ < az(z}] and the region of instability which we
want to find is determined by the following inequalities:
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btaMEr 4. . <N ChA4 @R L. (3.17)

The boundaries of the region of instability in the case s = 0 (n = 1)
could be found from the inequality (3.17). Indeed, in this case we have
from Formula (1.4) that ¢, = 1/2 7, and that the coefficient F(r; AZ; k)
is a continuous, periodic function with the period 1/2 r and for suffi-
ciently small values of k an analytic function of k2. Therefore, re-
placing the independent variable r in Equation (3.10) by a new variable
7, = 2r, the period of the function F(r; A2; k) will be again 7 and we
shall have

d%c 1

o+ L F (md% K)o =0 (3.18)

Since the quantity 1/4 A2 can assume an integral value only in the
case when n = 2, it follows that after replacing in Formula (3.16) p;(4)
by 1/4 p ,(4) we obtain two distinct values for a,

o, =2 — 4p, os® =3 — 4b

and the region of instability is determined by the inegualities
1+@—)k+. . . <EN1+E—4)k+. .. (3.19)

Since the transformation coefficient (3.4) is a periodic continuous
function, nonvanishing in the entire period, we can say that the char-
acteristic equation of the system (2.2) has only one unit root; if A is
outside the region of instability, that we have a conjugate pair of com-
plex roots of unit modulus; if A is inside the region of instability we
have two roots, one numerically greater, another numerically smaller
than unity. If A is on the boundary of the region of instability, then
the characteristic equation of the system (2.2) has a triple unit root.

In the first case, the solutions of Equation (2.2) will be stable, in
the second case unstable. The stability in the third case is of no in-
terest to us.

When x, > ¥y we could use all the previously-derived formulas after
performing in them the following substitution:

oYy AeoB, teo—i fon, vew (3.20)

We shall mention, that in this way we could conduct an analysis when

moments of inertia A, B, C have completely arbitrary values, that is, at
anyn=3, 4, 5, ...

4. Thus, when the parameters 4, B, C, Xgr Yoo ‘/’0 characterizing the
distribution of mass im a solid and in the unperturbed motion, respect-
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ively, satisfy the condition (3.11) and any one of the conditions (3.13),
(3.15), (3.17), (3.19) with the inequality sign, then the characteristic
equation of the system (2.2) and (2.3) will have one root numerically
greater and one root numerically smaller than unity and the remaining
four roots equal to unity. If the above-mentioned parameters satisfy any
of the relations (3.13), (3.15), (3.17), (3.19) with the equality signm,
then the characteristic equation will have six unit roots; when the para-
meters 4, B, C, Xgr Yoo ¢§ do not satisfy any of the above mentioned re-
lations, then the characteristic equation will have a conjugate pair of
complex roots of unit modulus, and four unit roots.

If all restrictions on initial perturbations are removed, then in the
first approximation, the instability will take place with respect to the
variables r, y, y°, and in the case when the parameters 4, B, C, Xgs Yor
Y1y, besides the condition of smallness for g and the condition (3.11)
satisfy also any of the relations (3.13), (3.15), (3.17), (3.19) with the
inequality sign, then the instability will take place with respect to the
variables p, g, y“. In this case, according to the well-known results of
Liapunov [ 3 ], the unperturbed motion will also be unstable. However, im-
posing on the initial perturbations certain restrictions we shall have a
conditional stability with respect to all variables p, q, r, v, ¥", ¥”
in the first approximation, and a conditional stability of the unperturb-
ed motion [3].

In the case when the parameters 4, B, C, Xgs Yos Y5y do not satisfy
any of the above mentioned relations, then in the first approximation
and under the restriction u{0) = 0 we shall have the conditional stabil~
ity with respect to all the variables p, ¢, r, y7 y", ¥”.

In the case when the parameters A, B, C, x,, y,, ¥, satisfy any one
of the mentioned relations with the equality sign, then we shall have
the conditional stability with respect to all the variables p, ¢, r,

y, Y7 y” in the first approximation with certain additional restric-

tions on the initial conditions besides the one u(0) = 0. These restric-
tions would depend on the number of groups of solutions corresponding to
the triple unit root of the characteristic equation of the system (2.2).

The stability of the unperturbed motion in the last two cases turns
out to be eritical and requires an additional investigation.

The performed investigation allows us to estimate the stability of
the motion of a solid determined by Formulas (1.2), (1.5) for sufficient-
ly small values of k.

It is my duty to express my gratitude to L.N. Sretenskii for his
suggestions which were taken into account in this paper.



The stability of motion of a heavy solid about a fixed point 433

BIBLIOGRAPHY

1. Sikorskii, Iu.S., Elementy teorii ellipticheskikh funktsii s pri-
lozheniani k mekhanike (Elements of the Theory of Elliptic Func-
tions with Applications to Mechanics). ONTI, 1836.

2. Malkin, I.G., Teoria ustoichivosti dvizhenia (Theory of Stability of
Motion). Gostekhizdat, 1952.

3. Liapunov, A.M., Sobr. soch. t. II (Collected Works, Vol. II). Izd-vo
Akad. Nauk SSSR, 1956.

Translated by T.L.



